您的位置:首页 > 科技 >

恒小花:AI人工智能的智能发展之路

2024-01-05 15:54:27丨 来源:网络 丨 阅读量:5553 丨 会员投稿

人工智能是计算机科学的一个分支,英文缩写为AI(Artificial Intelligence)。人工智能的目的在于尝试使用计算机技术生产出与人类智能相似的智能机器,包括但不仅限于人工智能机器人、语言识别、图像识别等系统。人工智能的智能表现在对人的思维过程的模拟,但是人的思维过程并不简单,它包括识别、分析、比较、概括、判断、推理等等步骤,是一个复杂且高级的认识过程,因此人工智能是一门非常具有挑战性的科学。

人工智能的概念大约诞生在20世纪50年代,到如今仅仅经历了60余年的发展之路,是一项非常高新的技术,被誉为二十一世纪三大尖端技术之一。人工智能虽然说是一门计算机科学的分支,但它在发展过程中还涉及到了心理学、哲学和语言学等学科,有学者甚至认为人工智能的发展几乎需要涉及自然科学和社会科学的所有学科,其范围远远超出计算机科学的范畴。

我们可以把人工智能简单的拆开成“人工”与“智能”两个方面来理解,“人工”很简单,即人为制造的,那么“智能”是什么呢?智能从字面含义上来讲,就是智力与能力的合体。我们知道,人类可以通过学习与实践发展自己的智力与能力。也因此,人工智能在发展过程中,其核心问题就是如何帮助机器拥有推理、知识、规划、学习、交流、感知、移动和操作物体的等能力,并尝试构建出智力。

依托于计算机技术的先天优势,学习知识对于人工智能而言可以说只是时间和存储空间的问题。自动化技术的发展,让人工智能拥有了移动与操作物体的能力。智能算法的发展,让人工智能在一定程度上也拥有了推理与交流的能力。那么人工智能在发展路上所遇到的难题,究竟是什么呢?

有学者总结,人工智能发展会面临着六大瓶颈,分别是数据瓶颈、泛化瓶颈、能耗瓶颈、语义鸿沟瓶颈、可解释性瓶颈和可靠性瓶颈。

数据瓶颈是指“由于数据收集能力的不足、理论无偏性和数据随机性等条件的限制而导致数据失真、缺乏等数据缺陷。”我们简单的套在人工智能上来看,收集数据能力的不足可以理解成识别技术的不成熟,理论无偏性可以理解成获取数据的质量,数据随机性的限制可以理解成获取及处理数据的难易度。随着大数据技术的发展,人工智能已在数据方面取得了比较明显的进步。不过,目前人工智能的发展仍未完全突破数据瓶颈的问题,训练数据的增大对人工智能算法的提升效果仍然不够理想。

泛化瓶颈是指人工智能在泛化能力提升上所遇到的困难。泛化能力是指“机器学习算法对新鲜样本的适应能力。”你可以将人工智能的泛化能力简单理解成自主学习能力与适应能力。通常来说,人工智能的各项能力,都需要通过大量的样本数据训练及算法规定来获得。在实验室的环境下,很多人工智能的各项能力均有不错表现。但是实际生活照比实验室环境而言,存在太多的不确定性,因此人工智能要想更好的落地,就需要拥有强大的泛化能力,以在应对突发情况及未知情况时能够给出合理的响应,更好的帮助人类。

能耗瓶颈可以简单的理解为人工智能在应用等过程中所消耗能源大于它实际所产生的效益,即能耗成本过高。而在优化人工智能能耗问题的过程中,首当其冲的就是对算法的优化。就像人体的大脑大概只占体重的2%,但是却能占据人体总能耗的20%一样,算法对于人工智能能耗的影响也非常的大。随着智能算法的发展,人工智能在能耗瓶颈上也有所进步。例如奥地利科技学院、维也纳工业大学和麻省理工学院的研究者就成功训练了一种能够控制自动驾驶汽车的低能耗智能算法,这一算法仅仅使用了75000个参数与19个神经元,比之前减少了数万倍。

语义鸿沟瓶颈是指人工智能缺乏真正的语言理解能力,无法根据上下文或常识理解一些容易产生歧义的语言,即听不懂“人话”。目前,人工智能在这一点上仍然没有显著的突破。

可解释性瓶颈是指人工智能过于依赖模型中已有的数据,缺乏深层学习能力的缺陷。人工智能很容易学习一个东西是什么,但是很难明白一个东西究竟为什么会这样。如果人工智能不能理解知识或行为之间的深层逻辑,那么它在用已有模型去应对未知变量时,就很容易引起模型崩塌,类似于“死机”。目前,已有学者提出可以使用对抗网络与最优传输技术找到模型坍塌的原因,并提出改进模型,从几何映射的角度上尝试去突破人工智能的可解释问题,在理论上取得了一些进步。

 

声明:以上内容为本网站转自其它媒体,相关信息仅为传递更多企业信息之目的,不代表本网观点,亦不代表本网站赞同其观点或证实其内容的真实性。投资有风险,需谨慎。

栏目资讯